

Heidi Poxon
Technical Lead & Manager, Performance Tools

Cray Inc.

Agenda

● Cray programming models on Interlagos

● OpenMP

● PGAS (UPC, Fortran coarrays)

● MPI

Cray Inc.
2

NCSA Workshop, February 2013

XE6 Node

Gemini

10 12X Gemini
Channels

(Each Gemini
acts like two
nodes on the

3D Torus)

HT 3

HT 3

Cray Baker Node
Characteristics

Number of
Cores

32*

Peak
Performance

~300 Gflops/s

Memory Size 64 GB per node

Memory
Bandwidth

85 GB/sec

High Radix
YARC Router
with adaptive

Routing

168 GB/sec
capacity

Cray Inc.
3

NCSA Workshop, February 2013

Interlagos Processor Architecture

●  Interlagos is composed of a
number of “Bulldozer
modules” or “Compute Unit”
●  A compute unit has shared

and dedicated components
●  There are two independent

integer units; shared L2 cache,
instruction fetch, Icache; and a
shared, 256-bit Floating Point
resource

●  A single Integer unit can
make use of the entire
Floating Point resource with
256-bit AVX instructions
●  Vector Length

●  32 bit operands, VL = 8
●  64 bit operands, VL = 4

Shared L2 Cache

Fetch

Decode

Shared L3 Cache and NB

FP
Scheduler

12
8-

bi
t F

M
A

C

L1 DCache L1 DCache

12
8-

bi
t F

M
A

C

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Int
Scheduler

Int
Scheduler

Int Core 0 Int Core 1

Dedicated
Components

Shared at the
module level

Shared at the
chip level

Cray Inc.
4

NCSA Workshop, February 2013

Building an Interlagos Processor

●  Each processor die is
composed of 4 compute units
●  The 4 compute units share a

memory controller and 8MB
L3 data cache
●  Each processor die is

configured with two DDR3
memory channels and
multiple HT3 links

Shared L3 C
ache

NB/HT Links Memory Controller

Cray Inc.
5

NCSA Workshop, February 2013

Two MPI Tasks on a Compute Unit
 ("Dual-Stream Mode")
●  An MPI task is pinned to each

integer unit
●  Each integer unit has exclusive

access to an integer scheduler,
integer pipelines and L1 Dcache

●  The 256-bit FP unit, instruction
fetch, and the L2 Cache are shared
between the two integer units
●  256-bit AVX instructions are

dynamically executed as two
128-bit instructions if the 2nd FP
unit is busy

●  When to use
●  Code is highly scalable to a large

number of MPI ranks
●  Code can run with a 2GB per task

memory footprint
●  Code is not well vectorized

Shared L2 Cache

Fetch

Decode

FP
Scheduler

12
8-

bi
t F

M
A

C

L1 DCache L1 DCache

12
8-

bi
t F

M
A

C

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Int
Scheduler

Int
Scheduler

Int Core 0 Int Core 1

MPI Task 0 Shared
Components

MPI Task 1

One MPI Task on a Compute Unit
("Single Stream Mode")
●  Only one integer unit is used per

compute unit
●  This unit has exclusive access to

the 256-bit FP unit and is capable of
8 FP results per clock cycle

●  The unit has twice the memory
capacity and memory bandwidth in
this mode

●  The L2 cache is effectively twice as
large

●  The peak of the chip is not reduced

●  When to use
●  Code is highly vectorized and

makes use of AVX instructions
●  Code benefits from higher per task

memory size and bandwidth
Shared L2 Cache

Fetch

Decode

FP
Scheduler

12
8-

bi
t F

M
A

C

L1 DCache L1 DCache

12
8-

bi
t F

M
A

C

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Integer
Scheduler

Integer
Scheduler

Integer Core
0

Integer Core
1

Idle
Components

Active
Components

One MPI Task per compute unit with Two OpenMP
Threads ("Dual-Stream Mode")

●  An MPI task is pinned to a compute
unit

●  OpenMP is used to run a thread on
each integer unit
●  Each OpenMP thread has exclusive

access to an integer scheduler, integer
pipelines and L1 Dcache

●  The 256-bit FP unit and the L2 Cache
is shared between the two threads

●  256-bit AVX instructions are
dynamically executed as two 128-bit
instructions if the 2nd FP unit is busy

●  When to use
●  Code needs a large amount of memory

per MPI rank
●  Code has OpenMP parallelism at each

MPI rank

Shared L2 Cache

Fetch

Decode

FP
Scheduler

12
8-

bi
t F

M
A

C

L1 DCache L1 DCache

12
8-

bi
t F

M
A

C

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Pi
pe

lin
e

Int
Scheduler

Int
Scheduler

Int Core 0 Int Core 1

OpenMP
Thread 0

Shared
Components

OpenMP
Thread 1

Running in Dual or Single-Stream modes

●  Dual-Stream mode is the current default mode. General use does not
require any options. CPU affinity is set automatically by ALPS.

●  Single-Stream mode is specified through the -j aprun option.
Specifying -j 1 tells aprun to place 1 process or thread on each
compute unit.

●  When OpenMP threads are used, the -d option must be used to
specify how many threads will be spawned per MPI process. See the
aprun(1) man page for more details. The aprun –N option may be
used to specify the number of MPI processes to assign per compute
node or -S to specify the number of processes per Interlagos die.
Also, the environment variable $OMP_NUM_THREADS needs to be set to
the correct number of threads per process.

●  For example, the following spawns 4 MPI processes, each with 8
threads, using 1 thread per compute unit.

OMP_NUM_THREADS=8 aprun -n 4 -d 8 -j 1 ./a.out
Cray Inc.

9
NCSA Workshop, February 2013

NUMA Considerations

●  Each Interlagos processor has 2 NUMA memory domains, each
with 4 Bulldozer Modules. Access to memory located in a
remote NUMA domain is slower than access to local memory.
Bandwidth is lower, and latency is higher.

●  OpenMP performance is usually better when all threads in a
process execute in the same NUMA domain. For the Dual-
Stream case, 8 CPUs share a NUMA domain, while in Single-
Stream mode 4 CPUs share a NUMA domain. Using a larger
number of OpenMP threads per MPI process than these values
may result in lower performance due to cross-domain memory
access.

●  When running 1 process with threads over the NUMA domains,
it’s critical to initialize (not just allocate) memory from the
thread that will use it in order to avoid NUMA side effects.

Cray Inc.
10

NCSA Workshop, February 2013

● Supported in the Cray Compiling Environment (CCE)
●  Latest release: CCE 8.1.4 (8.1.5 available February 28)
●  OpenMP directives recognized by default with CCE (no need for

command-line option)
●  OpenMP 3.1 compliant, working on OpenMP 4.0 compliance

● Participant in OpenMP standard committee

● OpenMP and automatic multithreading fully integrated
●  Share the same runtime and resource pool
●  Aggressive loop restructuring and scalar optimization done in the

presence of OpenMP
●  Consistent interface for managing OpenMP and automatic

multithreading

OpenMP

11
Cray Inc. NCSA Workshop, February 2013

Adding OpenMP to an MPI Program

●  For the next decade (at least) all HPC systems will have
the same basic architecture:
●  Message passing between nodes
●  Multithreading within the node

●  MPI will not do
●  Vectorization at the lowest level

●  SSE, AVX...
●  GPU, MIC...

● Current petascale applications are not structured to take
advantage of these architectures
●  Currently 80-90% of applications use a single level of parallelism

●  message passing between cores of the MPP system
●  Looking forward, application developers are faced with a significant

task in preparing their applications for the future

12
NCSA Workshop, February 2013 Cray Inc.

Three Levels of Parallelism Required

1.  Developers will continue to use MPI between nodes or
sockets

2.  Developers must address using a shared memory
programming paradigm on the node

3.  Developers must vectorize low level looping structures

While there is a potential acceptance of new languages for
addressing all levels directly. Most developers cannot afford
this approach until they are assured that the new language
will be accepted and the generated code is within a
reasonable performance range

13
NCSA Workshop, February 2013 Cray Inc.

● PGAS languages (UPC & Fortran Coarrays) fully optimized
and integrated into the compiler
●  UPC 1.2 and Fortran 2008 coarray support
●  No preprocessor involved
●  Target the network appropriately
●  Full debugger support with Allinea’s DDT

PGAS

15
Cray Inc. NCSA Workshop, February 2013

Enhancements / Changes in CCE 8.1 (3Q 2012)

NCSA Workshop, February 2013 Cray Inc.
16

●  Full support for the Fortran 2008 language standard
●  ‘ftn –h caf’ option to recognize Fotran coarray syntax enabled by

default
●  Predefined macro _CRAY_COARRAY defined with –h caf

● UPC is still an extension to C (not part of the language

standard) so it is NOT enabled by default

● Additional UPC and Fortran coarray shared data
structures are now automatically grouped into block
transfers, yielding improved data transfer speeds

Enhancements / Changes in CCE 8.1 (3Q 2012)

NCSA Workshop, February 2013 Cray Inc.
17

●  Improvement to conflict detection for writes to UPC
shared data, or to Fortran coarrays, allows applications to
achieve faster message rates for the common case of no
write conflicts

●  ‘cc –h bounds’ option provides checking of UPC shared
array accesses to ensure that are within acceptable
boundaries (use –h nobounds to disables these checks)

● Some system headers were removed from upc.h,
including stdlib.h which includes sys/types.h
●  Do not rely on upc.h to include other system headers
●  For example, include stdint.h in your code if you need sys/types.h

Enhancements for CCE 8.2

NCSA Workshop, February 2013 Cray Inc.
18

●  Targeted release date: 3Q 2013

●  The following are planned enhancements
●  Support for UPC 1.3 specification
●  Add UPC barrier and all-reduce collectives with PE subset support
●  Provide application filename and line number information for PGAS

runtime errors
●  Introductory version of Coarry C++, a data distribution model for C++,

similar to Fortran Coarrays
●  Looking for “friendly users” to try a prototype of Coarray C++ to give us

feedback

●  MPT 5.6.0 released November 2012
●  MPT 5.6.2 coming in February 2013

●  ANL MPICH2 version supported: 1.5b1

●  MPI accessed via cray-mpich2 module (used to be xt-
mpich2)

●  Full MPI2 support (except process spawning) based on ANL
MPICH2
●  Cray uses the MPICH2 Nemesis layer for Gemini
●  Cray provides tuned collectives
●  Cray provides tuned ROMIO for MPI-IO

●  See intro_mpi man page for details on environment

variables, etc.

Cray MPI Overview

Cray Inc.
20

NCSA Workshop, February 2013

MPICH2/Cray layout

Cray Inc.

Application

MPI Interface

MPICH2

ADI3

CH3 Device

CH3 Interface

Xpmem

Nemesis NetMod Interface

GNI GM MX PSM IB TCP
Cray XE6 specific

components

PM
I

Nemesis

Jo
b

la
un

ch
er

ROMIO

ADIO

Lus. GPFS ... Optimized
Collectives

NCSA Workshop, February 2013
21

● FMA (Fast Memory Access)
●  Used for small messages
●  Called directly from user mode
●  Very low overhead good latency

● DMA offload engine (BTE or Block Transfer Engine)
●  Used for larger messages
●  All ranks on node share BTE resources (4 virtual channels / node)
●  Processed via the OS (no direct user-mode access)
●  Higher overhead to initiate transfer
●  Once initiated, BTE transfers proceed without processor intervention

●  Best means to overlap communication with computation

● AMOs (Atomic Memory Operations)
●  Provide a fast synchronization method for collectives

Gemini Features Used by MPI

Cray Inc. NCSA Workshop, February 2013
22

Recent Cray MPI Enhancements

Cray Inc.
23

● Asynchronous Progress Engine
●  Used to improve communication/computation overlap
●  Each MPI rank starts a “helper thread” during MPI_Init
●  Helper threads progress the MPI state engine while application

is computing
●  Only inter-node messages that use Rendezvous Path are

progressed (relies on BTE for data motion)
●  Both Send-side and Receive-side are progressed
●  Only effective if used with core specialization to reserve a core/

node for the helper threads
●  Must set the following to enable Asynchronous Progress

Threads:
●  export MPICH_NEMESIS_ASYNC_PROGRESS=1
●  export MPICH_MAX_THREAD_SAFETY=multiple
●  Run the application with corespec: aprun -n XX -r 1 ./a.out

●  10% or more performance improvements with some apps

NCSA Workshop, February 2013

2P Example without using Async Progress Threads

Async Progress Engine Example

Compute

MPI_Isend()
 (to Rank B)

Compute Compute MPI_Wait()

A

 MPI_Irecv()
(from Rank A)

Compute Compute Compute

MPI_Wait() Take a trip through
Progress Engine, match msg, fire
off BTE and wait until it completes

B

T0 T1 T2 T3 T4

T0 T1 T2 T3 T4

Data Transfer

Cray Inc. NCSA Workshop, February 2013
24

Async Progress Engine Example

Compute

MPI_Isend (to Rank B)
 à send wakeup Msg to Thread B1

Compute Compute MPI_Wait()

A

 MPI_Irecv()
(from Rank A)

Compute Compute Compute
MPI_Wait() Recv is already
complete. Just finish bookkeeping.

B

Wakeup! Trip through Progress Engine,
match msg and fire off BTE. Back to sleep.

B1

2P Example using Async Progress Threads

T0 T1 T2 T3 T4

sleeping

A1 sleeping

Data Transfer

Cray Inc. NCSA Workshop, February 2013
25

Recent Cray MPI Enhancements (Cont’d)

Cray Inc.
26

Examples of recent collective enhancements:
●  MPI_Gatherv

●  Replaced poorly-scaling ANL all-to-one algorithm with tree-based algorithm
●  Used if average data size is <=16k bytes
●  MPICH_GATHERV_SHORT_MSG can be used to change cutoff
●  500X faster than default algorithm at 12,000 ranks with 8 byte messages

●  MPI_Allgather / MPI_Allgatherv
●  Optimized to access data efficiently for medium to large messages (4k – 500k

bytes)
●  15% to 10X performance improvement over default MPICH2

●  MPI_Barrier
●  Uses DMAPP GHAL collective enhancements

●  To enable set: export MPICH_USE_DMAPP_COLL=1
●  Requires DMAPP (libdmapp) be linked into the executable
●  Internally dmapp_init is called (may require hugepages, more memory)
●  Nearly 2x faster than default MPICH2 Barrier

●  Improved MPI_Scatterv algorithm for small messages*
●  Significant improvement for small messages on very high core counts
●  See MPICH_SCATTERV_SHORT_MSG for more info
●  Over 15X performance improvement in some cases

NCSA Workshop, February 2013

Optimizations on by default unless specified for:
● MPI_Alltoall

● MPI_Alltoallv
● MPI_Bcast

● MPI_Gather

● MPI_Gatherv

● MPI_Allgather
● MPI_Allgatherv
● MPI_Scatterv

Optimizations off by default unless specified for

● MPI_Allreduce and MPI_Barrier
●  These two use DMAPP GHAL enhancements. Not enabled by default.
●  export MPICH_USE_DMAPP_COLL=1

MPI Collectives Optimized for XE/XK

Cray Inc. NCSA Workshop, February 2013
27

MPI_Gatherv Performance

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

1024P 2048P 4096P 8192P 16000P

M
ic

ro
se

co
nd

s

Number of Processes

8 Byte MPI_Gatherv Scaling
Comparing Default vs Optimized Algorithms

on Cray XE6 Systems

Default Gatherv
Optimized Gatherv

500X	 Improvement	
at	 16,000	 Ranks.	

2,111,500 us

473,620 us

Cray Inc. NCSA Workshop, February 2013
28

Improved MPI_Alltoall

0

5000000

10000000

15000000

20000000

25000000

M
ic

ro
se

co
nd

s

Message Size (in bytes)

MPI_Alltoall with 10,000 Processes
Comparing Original vs Optimized Algorithms

on Cray XE6 Systems

Original Algorithm
Optimized Algorithm

Cray Inc.
29

NCSA Workshop, February 2013

MPI_Allgather Improvements

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1024p 2048p 4096p 8192p 16384p 32768p

M
ic

ro
se

co
nd

s

Number of Processes

 8-Byte MPI_Allgather and MPI_Allgatherv Scaling
Comparing Original vs Optimized Algorithms

on Cray XE6 Systems

Original Allgather

Optimized Allgather

Original Allgatherv

Optimized Allgatherv

Cray Inc.
30

NCSA Workshop, February 2013

Recent Cray MPI Enhancements (Cont’d)

Cray Inc.
31

● Minimize MPI memory footprint
●  Optional mode to allow fully connected pure-MPI jobs to run across

large number of cores
●  Memory usage slightly more than that seen with only 1 MPI rank per

node
●  See MPICH_GNI_VC_MSG_PROTOCOL env variable
●  May reduce performance significantly but will allow some jobs to run

that could not otherwise

● Static vs dynamic connection establishment
●  Optimizations for performance improvements to both modes
●  Static mode most useful for codes that use MPI_Alltoall
●  See MPICH_GNI_DYNAMIC_CONN env variable

NCSA Workshop, February 2013

Recent Cray MPI Enhancements (Cont’d)

Cray Inc.
32

●  MPI-3 non-blocking collectives available as MPIX_ functions
●  Reasonable overlap seen for messages more than 16K bytes, 8 or less

ranks per node and at higher scale
●  Recommend to use core-spec (aprun –r option) and setting

MPICH_NEMESIS_ASYNC_PROGRESS=1 and
MPICH_MAX_THREAD_SAFETY=multiple

● MPI I/O file access pattern statistics
●  When setting MPICH_MPIIO_STATS=1, a summary of file write and read

access patterns are written by rank 0 to stderr
●  Information is on a per-file basis and written when the file is closed
●  The “Optimizing MPI I/O” white paper describes how to interpret the data

and makes suggestions on how to improve your application.
●  Available on docs.cray.com under Knowledge Base

●  Improved overall scaling of MPI to over 700K MPI ranks
●  Number of internal mailboxes now dependent on the number of ranks in

the job. See MPICH_GNI_MBOXES_PER_BLOCK env variable for more
info

●  Default value of MPICH_GNI_MAX_VSHORT_MSG_SIZE now set to 100
bytes for programs using more than 256K MPI ranks. This is needed to
reduce the size of the pinned mailbox memory for static allocations.

NCSA Workshop, February 2013

MPI Rank Order

NCSA Workshop, February 2013 Cray Inc.
33

Is your nearest neighbor really your nearest neighbor?

And do you want them to be your nearest neighbor?

MPI Rank Placement

NCSA Workshop, February 2013 Cray Inc.
34

● Change default rank ordering with:
●  MPICH_RANK_REORDER_METHOD

● Settings:
●  0: Round-robin placement – Sequential ranks are placed on the next

node in the list. Placement starts over with the first node upon
reaching the end of the list.

●  1: SMP-style placement – Sequential ranks fill up each node before
moving to the next. - DEFAULT

●  2: Folded rank placement – Similar to round-robin placement except
that each pass over the node list is in the opposite direction of the
previous pass.

●  3: Custom ordering - The ordering is specified in a file named
MPICH_RANK_ORDER.

When Is Rank Re-ordering Useful?

NCSA Workshop, February 2013 Cray Inc.
35

● Maximize on-node communication between MPI ranks

● Grid detection and rank re-ordering is helpful for
programs with significant point-to-point communication

● Relieve on-node shared resource contention by pairing

threads or processes that perform different work (for
example computation with off-node communication) on
the same node

Automatic Communication Grid Detection

NCSA Workshop, February 2013 Cray Inc.
36

● Cray performance tools produce a custom rank order if it’s
beneficial based on grid size, grid order and cost metric

● Heuristics available for:
●  MPI sent message statistics
●  User time (time spent in user functions) – can be used for PGAS

codes
●  Hybrid of sent message and user time)

● Summarized findings in report

● Available with sampling or tracing

● Describe how to re-run with custom rank order

MPI Rank Order Observations

NCSA Workshop, February 2013 Cray Inc.
37

Table 1: Profile by Function Group and Function!
!
 Time% | Time | Imb. | Imb. | Calls |Group!
 | | Time | Time% | | Function!
 | | | | | PE=HIDE!
!
 100.0% | 463.147240 | -- | -- | 21621.0 |Total!
|--!
| 52.0% | 240.974379 | -- | -- | 21523.0 |MPI!
||---!
|| 47.7% | 221.142266 | 36.214468 | 14.1% | 10740.0 |mpi_recv!
|| 4.3% | 19.829001 | 25.849906 | 56.7% | 10740.0 |MPI_SEND!
||===!
| 43.3% | 200.474690 | -- | -- | 32.0 |USER!
||---!
|| 41.0% | 189.897060 | 58.716197 | 23.6% | 12.0 |sweep_!
|| 1.6% | 7.579876 | 1.899097 | 20.1% | 12.0 |source_!
||===!
| 4.7% | 21.698147 | -- | -- | 39.0 |MPI_SYNC!
||---!
| 4.3% | 20.091165 | 20.005424 | 99.6% | 32.0 | mpi_allreduce_(sync)!
||===!
| 0.0% | 0.000024 | -- | -- | 27.0 |SYSCALL!
|==!

MPI Rank Order Observations (2)

NCSA Workshop, February 2013 Cray Inc.
38

!
MPI Grid Detection:!
!
 There appears to be point-to-point MPI communication in a 96 X 8!
 grid pattern. The 52% of the total execution time spent in MPI!
 functions might be reduced with a rank order that maximizes!
 communication between ranks on the same node. The effect of several !
 rank orders is estimated below.!
!
 A file named MPICH_RANK_ORDER.Grid was generated along with this!
 report and contains usage instructions and the Custom rank order!
 from the following table.!
!
 Rank On-Node On-Node MPICH_RANK_REORDER_METHOD!
 Order Bytes/PE Bytes/PE%!
 of Total!
 Bytes/PE!
!
 Custom 2.385e+09 95.55% 3!
 SMP 1.880e+09 75.30% 1!
 Fold 1.373e+06 0.06% 2!
 RoundRobin 0.000e+00 0.00% 0!

MPICH_RANK_ORDER File

NCSA Workshop, February 2013 Cray Inc.
39

The 'Custom' rank order in this file targets nodes with multi-core
processors, based on Sent Msg Total Bytes collected for:

Program: /lus/nid00030/heidi/sweep3d/mod/sweep3d.mpi
Ap2 File: sweep3d.mpi+pat+27054-89t.ap2
Number PEs: 48
Max PEs/Node: 4

To use this file, make a copy named MPICH_RANK_ORDER, and set the
environment variable MPICH_RANK_REORDER_METHOD to 3 prior to
executing the program.

The following table lists rank order alternatives and the grid_order
command-line options that can be used to generate a new order.
…

Auto-Generated MPI Rank Order File

NCSA Workshop, February 2013 Cray Inc.
40

The
'USER_Time_hybrid'
rank order in this
file targets nodes
with multi-core!
processors, based on
Sent Msg Total Bytes
collected for:!
#!
Program: /lus/
nid00023/malice/
craypat/WORKSHOP/bh2o-
demo/Rank/sweep3d/src/
sweep3d!
Ap2 File:
sweep3d.gmpi-u.ap2!
Number PEs: 768!
Max PEs/Node: 16!
#!
To use this file,
make a copy named
MPICH_RANK_ORDER, and
set the!
environment variable
MPICH_RANK_REORDER_MET
HOD to 3 prior to!
executing the
program.!
#!
0,532,64,564,32,572,96
,540,8,596,72,524,40,6
04,24,588!
104,556,16,628,80,636,
56,620,48,516,112,580,
88,548,120,612!

1,403,65,435,33,411,97
,443,9,467,25,499,105,
507,41,475!
73,395,81,427,57,459,1
7,419,113,491,49,387,8
9,451,121,483!
6,436,102,468,70,404,3
8,412,14,444,46,476,11
0,508,78,500!
86,396,30,428,62,460,5
4,492,118,420,22,452,9
4,388,126,484!
129,563,193,531,161,57
1,225,539,241,595,233,
523,249,603,185,555!
153,587,169,627,137,63
5,201,619,177,515,145,
579,209,547,217,611!
7,405,71,469,39,437,10
3,413,47,445,15,509,79
,477,31,501!
111,397,63,461,55,429,
87,421,23,493,119,389,
95,453,127,485!
134,402,198,434,166,41
0,230,442,238,466,174,
506,158,394,246,474!
190,498,254,426,142,45
8,150,386,182,418,206,
490,214,450,222,482!
128,533,192,541,160,56
5,232,525,224,573,240,
597,184,557,248,605!
168,589,200,517,152,62
9,136,549,176,637,144,
621,208,581,216,613!

5,439,37,407,69,447,10
1,415,13,471,45,503,29
,479,77,511!
53,399,85,431,21,463,6
1,391,109,423,93,455,1
17,495,125,487!
2,530,34,562,66,538,98
,522,10,570,42,554,26,
594,50,602!
18,514,74,586,58,626,8
2,546,106,634,90,578,1
14,618,122,610!
135,315,167,339,199,34
7,259,307,231,371,239,
379,191,331,247,299!
175,363,159,323,143,35
5,255,291,207,275,183,
283,151,267,215,223!
133,406,197,438,165,47
0,229,414,245,446,141,
478,237,502,253,398!
157,510,189,462,173,43
0,205,390,149,422,213,
454,181,494,221,486!
130,316,260,340,194,37
2,162,348,226,308,234,
380,242,332,250,300!
202,364,186,324,154,35
6,138,292,170,276,178,
284,210,218,268,146!
4,535,36,543,68,567,10
0,527,12,599,44,575,28
,559,76,607!
52,591,20,631,60,639,8
4,519,108,623,92,551,1
16,583,124,615!

3,440,35,432,67,400,99
,408,11,464,43,496,27,
472,51,504!
19,392,75,424,59,456,8
3,384,107,416,91,488,1
15,448,123,480!
132,401,196,441,164,40
9,228,433,236,465,204,
473,244,393,188,497!
252,505,140,425,212,45
7,156,385,172,417,180,
449,148,489,220,481!
131,534,195,542,163,56
6,227,526,235,574,203,
598,243,558,187,606!
251,590,211,630,179,63
8,139,622,155,550,171,
518,219,582,147,614!
761,660,737,652,705,66
8,745,692,673,700,641,
684,713,644,753,724!
729,732,681,756,721,71
6,764,676,697,748,689,
657,740,665,649,708!
760,528,736,536,704,56
0,744,520,672,568,712,
592,752,552,640,600!
728,584,680,624,720,51
2,696,632,688,616,664,
544,608,656,648,576!
762,659,738,651,706,66
7,746,643,714,691,674,
699,754,683,730,723!
722,731,763,658,642,75
5,739,675,707,650,682,
715,698,666,690,747!

257,345,265,313,281,30
5,273,337,609,369,577,
377,617,329,513,529!
545,297,633,361,625,32
1,585,537,601,289,553,
353,593,521,569,561!
256,373,261,341,264,34
9,280,317,272,381,269,
309,285,333,277,365!
352,301,320,325,288,35
7,328,304,360,312,376,
293,296,368,336,344!
258,338,266,346,282,31
4,274,370,766,306,710,
378,742,330,678,362!
646,298,750,322,718,35
4,758,290,734,662,686,
670,726,702,694,654!
262,375,263,343,270,31
1,271,351,286,319,278,
342,287,350,279,374!
294,318,358,383,359,31
0,295,382,326,303,327,
367,366,335,302,334!
765,661,709,663,741,65
3,711,669,767,655,743,
671,749,695,679,703!
677,727,751,693,647,70
1,717,687,757,685,733,
725,719,735,645,759!
!

!

grid_order Utility

NCSA Workshop, February 2013 Cray Inc.
41

● Can use grid_order utility without first running the

application with the Cray performance tools if you know a
program’s data movement pattern

● Originally designed for MPI programs, but since

reordering is done by PMI, it can be used by other
programming models (since PMI is used by MPI, SHMEM
and PGAS programming models)

● Utility available if perftools modulefile is loaded

● See grid_order(1) man page or run grid_order with no
arguments to see usage information

Reorder Example for Bisection Bandwidth

NCSA Workshop, February 2013 Cray Inc.
42

● Assume 32 ranks

● Decide on row or column ordering:

●  $ grid_order –R –g 2,16
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31

●  $ grid_order –C –g 2,16
0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30
1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31

● Since rank 0 talks to rank 16, and not with rank 1, we

choose Row ordering

Reorder Example for Bisection Bandwidth (2)

NCSA Workshop, February 2013 Cray Inc.
43

●  Specify cell (or chunk) to make sure rank pairs live on same
node (but don’t care how many pairs live on a node)

●  $ grid_order –R –g 2,16 –c 2,1
0,16
1,17
2,18
3,19
4,20
5,21
6,22
7,23
8,24
9,25
10,26
11,27
12,28
13,29
14,30
15,31

Fills a Magny-
Cours node

Using New Rank Order

NCSA Workshop, February 2013 Cray Inc.
44

● Save grid_order output to file called
MPICH_RANK_ORDER

● Export MPICH_RANK_REORDER_METHOD=3

● Run non-instrumented binary with and without new rank
order to check overall wallclock time for improvements

Example Performance Results

NCSA Workshop, February 2013 Cray Inc.
45

● Default thread ordering
●  Application 8538980 resources: utime ~126s, stime ~108s

● Maximized on-node data movement with reordering
●  Application 8538982 resources: utime ~38s, stime ~106s

Cray Inc.
46

NCSA Workshop, February 2013

● Four message protocols based on size of
message…

● Eager Message Protocol (up to 8K bytes)
●  E0 and E1 Paths

● Rendezvous Message Protocol
●  R0 and R1 Paths

● MPI environment variables that alter those paths

MPI Inter-Node Messaging

Cray Inc. NCSA Workshop, February 2013
47

●  Four Main Pathways through the MPICH2 GNI NetMod
●  Two EAGER paths (E0 and E1)
●  Two RENDEZVOUS (aka LMT) paths (R0 and R1)

● Selected Pathway is Based (generally) on Message Size

● MPI env variables affecting the pathway
●  MPICH_GNI_MAX_VSHORT_MSG_SIZE

●  Controls max size for E0 Path (Default varies with job size: 216-8152
bytes)

●  MPICH_GNI_MAX_EAGER_MSG_SIZE
●  Controls max message size for E1 Path (Default is 8K bytes)

●  MPICH_GNI_NDREG_MAXSIZE
●  Controls max message size for R0 Path (Default is 512K bytes)

●  MPICH_GNI_LMT_PATH=disabled
●  Can be used to Disable the entire Rendezvous (LMT) Path

MPI Inter-node Messaging

0 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1MB 2MB 4MB ++
 E0 E1 R0 R1

Cray Inc. NCSA Workshop, February 2013
48

● Default is 8192 bytes
● Maximum size message that can go through the eager

protocol.
● May help for apps that are sending medium size

messages, and do better when loosely coupled. Does
application have a large amount of time in
MPI_Waitall? Setting this environment variable higher
may help.

● Max value is 131072 bytes.
● Remember for this path it helps to pre-post receives if

possible.
● Note that a 40-byte message header is included when

accounting for the message size.

MPICH_GNI_MAX_EAGER_MSG_SIZE

Cray Inc.
49

NCSA Workshop, February 2013

MPICH_GNI_RDMA_THRESHOLD

Cray Inc.
50

● Controls the crossover point between FMA and BTE path
on the Gemini.

●  Impacts the E1, R0, and R1 paths

●  If your messages are slightly above or below this
threshold, it may benefit to tweak this value.
●  Higher value: More messages will transfer asynchronously, but at a

higher latency.
●  Lower value: More messages will take fast, low-latency path.

● Default: 1024 bytes
● Maximum value is 64K and the step size is 128

● All messages using E0 path (GNI Smsg mailbox) will be
transferred via FMA regardless of the
MPICH_GNI_RDMA_THRESHOLD value

NCSA Workshop, February 2013

● Default is 64 32K buffers (2M total)

● Controls number of 32K DMA buffers available for
each rank to use in the Eager protocol

● May help to modestly increase. But other resources
constrain the usability of a large number of buffers.

MPICH_GNI_NUM_BUFS

Cray Inc.
51

NCSA Workshop, February 2013

● By default, mailbox connections are established when a
rank first sends a message to another rank. This
optimizes memory usage for mailboxes. This feature can
be disabled by setting this environment variable to
disabled.

●  For applications with all-to-all style messaging patterns,
performance may be improved by setting this
environment variable to disabled.

MPICH_GNI_DYNAMIC_CONN

Cray Inc. NCSA Workshop, February 2013
52

MPI-3 Support

NCSA Workshop, February 2013 Cray Inc.
53

● MPI-3 Forum active participant
●  Contributing to Fortran 2008 part of MPI-3

●  Tracking ANL MPICH2 implementation of MPI-3

● Cray plans to support MPI-3 incrementally (some
functionality is available now)

● Will provide optimizations focused to certain areas such
as with non-blocking collectives

MPI-3 Features

NCSA Workshop, February 2013 Cray Inc.
54

● Non-blocking collectives (MPT 5.6.0)
●  Available as MPIX_ functions

●  Reasonable overlap seen for messages more than 16K bytes, 8 or
less ranks per node and at higher scale

●  Recommend to use core-spec (aprun –r option) and setting
MPICH_NEMESIS_ASYNC_PROGRESS=1 and
MPICH_MAX_THREAD_SAFETY=multiple

MPI-3 Features (2)

NCSA Workshop, February 2013 Cray Inc.
55

●  Features planned for availability in 2013/2014

●  Tools interface
● Mprobe
● MPI-3 const bindings
● Neighborhood collectives (functional)
● RMA (functional)
● Consistent use of []
● MPI_Count
●  Fortran 2008 support

●  Needs compiler support

● Neighborhood collectives (optimized for topology)
● RMA (optimized to use DMAPP)

● GPU-to-GPU support
● Merge to MPICH 3.0 release from ANL
● Release and optimize MPI-3 features
●  Improvements to small message MPI_Alltoall at

scale
●  Improvements to MPI I/O
● MPI Stats / Bottlenecks Display

What’s Coming Next?

Cray Inc. NCSA Workshop, February 2013
56

Summary

NCSA Workshop, February 2013 Cray Inc.
57

● Cray MPI optimizations based on message transfer size
and job size

● Cray works very hard to establish good defaults

● Should be able to get very good overlap of large pt2pt

messages (use async progress engine with core
specialization)

● Understand where your performance bottleneck is
●  If MPI_Alltoall for example,

●  Look at Alltoall-specific environment variables (man intro_mpi(3))
●  Try the non-blocking collectives

●  If communication load imbalance detected
●  Try custom rank reorder

NCSA Workshop, February 2013
58

Cray Inc.

